Showing posts with label virtual optimization. Show all posts
Showing posts with label virtual optimization. Show all posts

Thursday, August 25, 2011

Keeping Virtualization Costs Down

Virtualization itself is a technology that considerably lowers IT operating costs. Right at the start, multiple servers can be launched and operated without the need for additional hardware. Then come energy savings, the ease and speed of use for users and administrators, and many more economic benefits.  What could actually cause virtualization operating costs to rise?

Virtual machines depend on numerous innovations to operate. A group of VMs all utilize a common hardware platform, to which data is saved and from which it is read. Hence if there are any issues with I/O operations, every virtual machine based in that hardware will be affected.

Issues with I/O read and write operations are some of the top barriers to computer system performance, physical or virtual. But due to the fact that an I/O must pass through multiple layers in a virtual environment, such issues can have an even more profound impact with VMs.

In addition to general slow performance caused by I/O bottlenecks—leading to sluggish speed of VMs, slowed or stalled backups and other major problems—troubles with I/Os are also responsible for other issues that might not so readily be associated with them. For example, because of the excessive I/O activity, hardware life is decreased by 50 percent or more. In that the hardware is the host for VMs, attention to hardware life is crucial.

Also particular to virtual environments is the symptom of slow virtual migration. The task of migrating servers from physical to virtual (known as P2V) or from one type of virtual machine to another is a basic operation in virtual environments. The slowing down of this process can be cumbersome, especially if users or processes are waiting for the new virtual machine. As with the other issues listed above, slow virtual migration can be traced directly to issues with I/O operations.

Because of the many innovations inherent in a virtual environment, a comprehensive virtual platform disk optimizer is required as the solution. The number of I/Os required to read and write files are drastically and automatically reduced. But also solved is coordination of I/O resources, and the address of virtual disk “bloat”—a situation that occurs due to excessive I/Os, and for which there is no other solution.

Issues with I/O operations raise operating costs within a virtual environment across the boards. A virtual platform disk optimizer is the key to keeping them under control.

Wednesday, August 10, 2011

Barriers to Virtual Machine Performance

Virtual machines (VMs) have created a revolution in computing. The ability to launch a brand-new server with a few keystrokes, utilize it, and then discontinue or change that utilization, is a facility that will only grow with time. The future direction for virtual machines is probably a scenario in which a majority of computing is actually performed on VMs, with minimal hardware only present for hosting purposes.

The technologies being utilized for virtual technology are quite remarkable. They sum up to resources being coordinated and shared in such a way that work gets done across multiple platforms and environments almost as if no barriers existed at all. However, there are several issues that, if not properly addressed, can severely impact virtual machine performance.

First is addressing the issue of I/O reads and writes. If reads and writes are being conducted in the presence of file fragmentation, I/O bandwidth will quickly bottleneck. Fragmentation is the age-old problem of files being split into tens or hundreds of thousands of pieces (fragments) for better utilization of hard drive space.

In a virtual environment, fragmentation has a substantial impact, if only due to the multiple layers that a single I/O request must pass through in a virtual environment. If each I/O is performed for a single file fragment, performance is critically slowed down, and this condition can even lead to an inability to run more VMs.

In dealing with fragmentation, there is also the need for coordination of shared I/O resources across the platform. A simple defragmentation solution will cut across the production needs of VMs, simply because the effective prioritizing of I/Os is not done.

There is also a situation of virtual disk “bloat”-- wasted disk space that takes place when virtual disks are set to dynamically grow but don’t then shrink when users or applications remove data.

Although these barriers are multiple, there is a single answer to them: virtual platform disk optimization technology. The first barrier, fragmentation, is dealt with by preventing a majority of it before it even occurs. Files existing in as few fragments as possible means I/O reads and writes are occurring at maximum speed. Resources are also coordinated across the platform so that VM production needs are fully taken into account.

Such software also contains a compaction feature so that wasted disk space can be easily eliminated.

These barriers can frustrate the management of virtual environments. Fortunately, IT personnel can solve them with a single virtual machine optimization solution.

Wednesday, July 6, 2011

As The Virtual World Turns...Optimize It

Virtual machine technology has rapidly expanded since being introduced a few short years ago. Now virtual servers are launched and perform many different types of tasks, and have moved over to take an important role in storage. Virtual machines are now proliferating to become part of the desktop environment—and it appears that PCs will soon be replaced by ultra-thin clients (aka zero clients) that simply act as interfaces for virtual machines.

It appears that our not so distant future will be ensconced completely in the cloud—and nearly all of our computing actions will be virtual. Technologies continue to be evolved to make this possible; the one thing that users, IT staff and corporate executives will not sacrifice is speed of access to data and rapidity of processing. Hence, anything which gets in the way of such performance must be firmly addressed.

As an ever-increasing amount of our computing becomes virtual, the speed of interaction between hardware hosts and virtual machines becomes more critical. Coordination of virtual machines also becomes vital—especially as the quantity of these increases.

Speed of access is dependent upon a basic computer operation: I/O reads and writes. In fact, that level is so important it can actually have a considerable impact on the entire environment. Many additional I/Os can be required for reads and writes when files are in a state of fragmentation. Originally developed for better utilization of hard drive space, fragmentation causes files to be split into tens or hundreds of thousands of pieces (fragments). Because of the additional I/Os required to read and write fragmented files, performance is seriously slowed down and I/O bandwidth bottlenecks occur frequently.

Within a virtual environment, an I/O request must pass through multiple layers. Because of this, fragmentation has even more of a profound impact in a virtual environment than it does in a strictly hardware platform. Left alone, it can even lead to an inability to launch and run more virtual machines.

Due to the complexity of virtual environments, a simple defragmentation solution won’t properly address the situation. In addition to fragmentation itself, I/Os must be prioritized so that shared I/O  resources can be properly coordinated. Fragmentation in virtual environments also causes virtual disk “bloat”, in which virtual disks are set to dynamically grow but don’t then shrink when users or applications remove data.

State of the art virtual platform disk optimization technology addresses all of these issues. A majority of fragmentation is actually prevented before it occurs. Virtual machine resources are fully coordinated, and wasted virtual disk space is eliminated with a compaction feature.

As our computing world continues to become increasingly virtual and move into the cloud, keep that world turning with competent optimization.